Land-use classification via ensemble dropout information discriminative extreme learning machine based on deep convolution feature
نویسندگان
چکیده
منابع مشابه
Discriminative clustering via extreme learning machine
Discriminative clustering is an unsupervised learning framework which introduces the discriminative learning rule of supervised classification into clustering. The underlying assumption is that a good partition (clustering) of the data should yield high discrimination, namely, the partitioned data can be easily classified by some classification algorithms. In this paper, we propose three discri...
متن کاملExtreme Learning Machine for land cover classification
This paper explores the potential of extreme learning machine based supervised classification algorithm for land cover classification. In comparison to a backpropagation neural network, which requires setting of several user-defined parameters and may produce local minima, extreme learning machine require setting of one parameter and produce a unique solution. ETM+ multispectral data set (Engla...
متن کاملDynamic ensemble extreme learning machine based on sample entropy
Extreme learning machine (ELM) as a new learning algorithm has been proposed for single-hidden layer feed-forward neural networks, ELM can overcome many drawbacks in the traditional gradient-based learning algorithm such as local minimal, improper learning rate, and low learning speed by randomly selecting input weights and hidden layer bias. However, ELM suffers from instability and over-fitti...
متن کاملDynamic Cost-sensitive Ensemble Classification based on Extreme Learning Machine for Mining Imbalanced Massive Data Streams
In order to lower the classification cost and improve the performance of the classifier, this paper proposes the approach of the dynamic cost-sensitive ensemble classification based on extreme learning machine for imbalanced massive data streams (DCECIMDS). Firstly, this paper gives the method of concept drifts detection by extracting the attributive characters of imbalanced massive data stream...
متن کاملVoting based Extreme Learning Machine with Accuracy based ensemble Pruning
Extreme Learning Machine is a fast single layer feed forward neural network for real valued classification. It suffers from the problem of instability and over fitting. Voting based Extreme Learning Machine, VELM reduces this performance variation in Extreme Learning Machine by employing majority voting based ensembling technique. VELM improves the performance of ELM at the cost of increased re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Science and Information Systems
سال: 2020
ISSN: 1820-0214,2406-1018
DOI: 10.2298/csis191222010z